Mathematics
Carlenabaileymay5010
9

Use the REMAINDER THEOREM to explain whether or not (x-2) is a factor of F(x)=x^4-2x^3+3x^2-10x+3

+0
(1) Answers
katiebabyyy

[latex]\frac{P(x)}{R(x)}|\frac{D(x)}{Q(x)}[/latex] [latex]\frac{x^4-2x^3+3x^2-10x+3}{}|\frac{x-2}{}[/latex] [latex]\frac{x^4-2x^3+3x^2-10x+3}{-x^4+2x^3}|\frac{x-2}{x^3}[/latex] [latex]\frac{3x^2-10x+3}{-3x^2+6x}|\frac{x-2}{x^3+3x}[/latex] [latex]\frac{-4x+3}{4x-8}|\frac{x-2}{x^3+3x-4}[/latex] [latex]\frac{-5}{}|\frac{x-2}{x^3+3x-4}[/latex] [latex]\boxed{\boxed{\frac{x^4-2x^3+3x^2-10x+3}{-5}|\frac{x-2}{x^3+3x-4}}}[/latex] [latex]R(x)=-5[/latex]

Add answer